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There is considered the problem of impression of a stamp in the shape of a 
body of revolution in a transversely-isotropic half-space, with friction and 
adhesion taken into account. A method based on expanding the solution in 
a series in a parameter dependent on the ratio of the stiffness characteristics 
is used. The case of a stamp with a flat base is considered as an i~u~tration. 

Approximate relationships are obtained to determine the radius of the adhesion 

area and the contact stress distribution. 

Let a stamp in the shape of a body of revolution be impressed in a transversely- 

isotropic half-space. The contact domain consists of the friction part abutting on the 

boundary of the contact domain, and the adhesion part. Because of symmetry the 
contact domain and the adhesion part will be con- 

centric circles with a common center on the 

stamp axis. The radius of the circle separating 
the friction and adhesion partsisnot known before- 

hand and should be determined during solution 

of the problem. It is required to determine the 
normal and tangential forces in the contact dom- 
ain also. 

Fig. 1 
The problem reduces to solving the equilibr- 

ium equations for a transversely-isotropic medium 

under the follow~g boundary conditions outside the contact domain (I* > a), in 

the whole contact domain (1. < a), on the adhesion part (0 ( r ( F) and on 

the slip part (b < r < a): 

o, = rTZ = 0, I‘ > 0; I(1 == -c + f(r), r<a 
(1.2) 

u = 0, 0 < r < b; zr; = -f3GL, b < r < a 

In addition 

w-2-0, u -+ 0 when t/m+ -+ cc 

590 
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Here a is the radius of the contact domain, b is the radius of the adhesion section, 
f (r) is a function describing the shape of the stamp, E and E’ are the tension- 

compression elastic moduli in the plane of isotropy and in a normal direction, G’ is 
the shear modulus in a plane normal to the plane of isotropy, w and u are displace- 

ment vector components in the directions of the z and r axes, respectively, and p 

is the friction coefficient. The Poisson’s ratio are taken equal to zero. 
Let us introduce the transformation of variables 

substituting (1.3) and (1.4) into (1. l), we obtain, respectively 

Let us assume that E > E’ - G’; then E can be considered a small para- 
meter in an asymptotic analysis of (1.5) and (1.6). The solution obtained by asym- 

ptotic integration of the system of the first kind (1.5) corresponds to a stress-strain 
state varying relatively slowly along the z axis as compared with the corresponding 

solution of the system of the second kind (1. S), which is of a boundary layer nature 

PI* 
Let us represent the d~placement vector components in the form of the sum of 

solutions of both kinds 

u=ur$u r, w = Wr + WL? (1.7) 

We seek the ~nc~ons W’ and Ur (I = 1, 2) in the form of ~ymptotic series 
in the parameter a!/, 

(1. *> 

An additional coordinate ~ansformation is hence introduced 
co 

Cl == z1 2 ezai, 
i-0 

52 C 22 $ E$i (1.9) 

with the undetermined coefficients ai and fi i (i - 0, 1, . . .). 
Substituting (1.8) and (1.9) into (I, 5) and (1.6) and the boundary conditions, and 

splitting the expressions obtained in powers of a’/~, we obtain the following equations 
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and boundary conditions for the functions WI9 W and Ul,ai+j. 
The stress-strain state of the first kind is 

0,) z 5 C&Olp-i (i =: 0, 1, . . .) 
i=o 

The boundary conditions are: 
for i=O, j-0 

WI,0 --: 
-c + f (r), f' < a; WC',0 = 0, r > a 

for all the remaining i, j 

W 1, 2ifj z- J/p, 2(i-l)+j 
, r<a 

(1.11) 

(1.12) 

The stress-strain state of the second kind is 

i=o 

The boundary conditions ate 
uZ.Zi+j 

z- ul,%i+j-1 ) r<h (1.14) 

It should be taken into account that if any upper limit of summation in (1.10) and 
(1. lZy(l.14) is negative, then this sum equals zero. Analogously, if any function 

of the second superscript (denoting the number of the approximation) is negative,then 
this function is zero. For instance, for i = 0 we obtain from (1.10) and (1.13) 

W:;j + W’,‘,jb, = 0, u;;.j _ - kY,w$j 

w$‘co = - k”JsU;@o, uz;j + u~Cjco = () 

The first equations (for the functions W1,2i+j) in the system (1.10) as well as the 
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second equations ( for the functions u21 2i+j) in the system (1.13) will be called basic 

equations. 

The following theorem is valid for the basic equations: if the coefficients ai and 

Bi are determined by the formulas 

c&)=1, 2czp+1= k2?, + $, (k2Yp-m - %+l-??a) a, 
(1.15) 

Bo=l, 2pp+1== - k26p - .& Wp-m + k&+1-m) Pm 
n-1 

yo=60=1, y,,=an+ka ~bjyn-l-j 
j=o 

n-1 

6, = /3, + k2d,-1 - z djC,_j 
j=o 

then the fundamental equations have the form 

1,2i+j + w&zi+j = 0 

(7: 0, 1,. . .; j = 0, ;, 

~2 2i+j + uti;2i+j = o 
(1.16) 

The proof of this theorem is presented in Sect. 3. 
We shall henceforth consider the coefficients Ui, pi to be defined by (1.13). 

It is seen from the expansions presented that the boundary conditions for the func- 
tions W1y 2i+j are satisfied in the solution of the first equations of the system (1.10) 

describing the stress-strain state of the first kind. The functions U1lzi+j are defined 

as particular solutions of the second equations of this system. 
The boundary conditions for the system (1.13), describing the stress-strain state 

of the second kind, are determined after the appropriate equations of the first kind 

have been solved. These boundary conditions are satisfied in the solution of the 

second equations of the system (1.13). The functions w21ti+j are found as particular 
solutions of the first equations of this system. 

The problem therefore reduces to successive integration of (1.16) for the functions 
W1*2i+j and the functions U*lsi+j. Finding the functions Ul,zi+j and W2, Pi+j 

is not difficult. 
The exact solution of (1.16) can be obtained by using integral transformations 

[2]. It can be shown that the functions W 1~ zi+j and U2’ zi+j are continuous in the 

whole domain of definition, and their derivatives are continuous everywhere except 

at the points r = b, z = 0 and r = a, z = 0, where they have integrable sing- 

ularities. It hence follows that the solution is asymptotic in nature everywhere with 
the exception of arbitrarily small neighborhoods of the above-mentioned points. 

After the functions Wz,2itj and ul,*i+j ( 1-1 2*i-0 ( ?,. . .; j = 0, 1) 
have been determined, the stresses oz and z,, are’foind from the formulas 
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The unknown boundary of the adhesion and friction parts is found from tne condi- 
tion of continuity of the tangential stresses on this boundary, 

The constant c in (1.11) (the settlement of thestamp) is determined from the 
stamp equilibrium condition (P is the magnitude of the clamping force) 

(1.17) 

2. As an illustration, let us solve the problem for a stamp with a flat base (f (r) 

E 0). The solution (taking account of one approximation) reduces to integrating(2.1) 
with the boundary conditions (2.2) 

-- pwy, b<r<u 
52 = 0, u2z”= 0, r< h; Ut” = 

- Jc’I~W~~~, r > a 

The function W”’ has the form (the constant C is determined from the condition 

( 1.17)) 
W1fo - -2Cn+ arc sin 12a fl/ &” + (r + a)’ + vi 51” -k (a - rY?-‘l 

C -Z pk-‘i5 / (&E’) 
(2.3) 

We seek the solution of (2.1) in the form (J% (5) is the first order Bessel function) 
m 

@I” = c A (P) exp (PU J, (~9 dp IL 

Substi~~g this expression into the second pair of boundary condition (2.2) writt- 
en with (2.3) taken into account, we obtain a system of dual integral equations to 

determine the function A (p) 

m 

s A (PI JI tpr) p G = 
ZCpn-1 (as - r2)-‘!s, b<r<a 

0 - 2Cak-"z (nr)-‘(9 - a2)-““, r > a 

The solution of these equations has the form (U (x) is the complete elliptic integral 
of the first kind) [Z] 

A (PI= % [-- k% sin (up) +- B (p)] 

I sin (p) dx + pk”’ 

” 
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The normal contact stresse.s and the tangentialstresses under a flat stamp are determin- 
ed by the formulas ’ 

cr, = - (2na)-‘P (a” - P)-‘I”, T,.~ = G’k-‘iy+ 

It is clear from physical considerations that the tangential stresses should be con- 
tinuous on the interface of the adhesion and slip zones, therefore, the derivative VCzso 

should be conlinuous on this boundary, We have 
5s = 0, “$0 = 2Cpn (aa - rs)-‘iz, B f r f a (2.4) 

Integrating the inner integral by parts twice, we reduce the last formula to 

52 = 0, U$” = 20x-l (G, + G, + I, + 1s) 

The function G1 is continuous in P in the interval 0 f r < b < a. The integral 

11 is also continuous in this interval (as a defmite integral of the continuous function 
fi). The improper integral I2 converges uniformly (for large p the function 

fi admists the estimate fi < B / ps [SJ )* and therefore converges to a continnous 
fhnction. The function Gs undergoes a discontinuity at r = b. Hence, G, = 0 

is necessary for the continuity of the derivative ut;slo . Consequently 

k”’ In (fl jr 6 / a) / (1 - b / a)) = 2p (b / a) K' (b / a) (2.5) 

The relationship (2.5) determines the boundary of the adhesion and friction parts 
not known earlier. 

After simple, but awkward manipulations, we obtain the following formula for the 
tangential stresses on the adhesion part @I, (n, 5) is the complete elliptic integral of 
the third kind): 

T,,, = ~J&‘&-sa-st-l (1 _ ts)-‘/z {p&$2t + 

t/L2 - t2)“‘QV1 In ((1 + BJ ! (1 - b*,, - 2pk-“Pt211, (t2 - 1, 0%) / 
(1 - @I (1 - P)--“2 - In ((1 - t2)*jz + (Be* - ,2)*i2) / ((f - $)‘~e - 

(8*2 - ty”))}, t = r / a, f3* = b I a (0 < t < f3*) 

0n the slip part 
z FE = ‘/zPpn-‘a-s (1 - t”)-‘l? @* < t < I) 

The dependence of the quantity b / ,Z (the ratio of the adhesion part radius to 
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the stamp radius) on the friction coefficient p for k- = l/s is shown in Fig. 2 (curve 
1) and the dis~ibution of the dime~ionl~s tangential stresses T, = ?rz &U / P in 
the contact domain is presented in Fig.3 for k I 1j3, p = 0.3. The point fi* = h / a 
separates the adhesion and friction parts. 

It should be noted that in the solution obtained (taking just one approximation into 
account) the singularity in the contact stresses on the boundary of the contact domain 
has the form (a - T)-‘~~ while the exact solution of the problem in the presence of 
Coulomb friction should contain the singularity (a - r)-‘/a+e(P~E) exactly as for the 
plane problem {this follows from the fact that the equations of tree-dim~onal elast- 
icity theory reduce to the plane problem and complex shear in the neighborhood of 
the singular line [a] ). Therefore, the epxression for 6 is known [S], The series ex- 
pansion in e has the form 

(2.61 
F [pk3i2 In (a - r) + “lzp2k ln2 (a - r)] + . . .} 

The singularity obtained in this paper agrees with the first term of the expansion. 
Subsequent approximations will evidently contain appropriate corrections. 

The relative error of any partial sum of the series (2.6) becomes arbitrarily large 
as ~-+a. Meanwhile, uniform accuracy in the whole contact domain can be achiev- 
ed by “matching” the approximate and “singular” solutions, which has the form 

or” z A (@, - r)-‘/gtt) 

The constant factor A is determined from the matching conditions which are 
given as follows: both the approximate and singular solutions and their derivatives with 
respect to P should agree in a certain neighborhood of r = ro i.e., for r = Q, z = 0 

(Jz = CT,*, i3o, / 8r = 30,* I i% (2.7) 

The conditions (2.7) permit the determination of the radius r,, , and the const- 
ants of the approximate and singular solutions, in combination with the integral equii- 
ibrium condition of the stamp. The dependence of the position ofthe matching line 
on the coefficient p is shown in Fig. 2 for k = l/s and F = 1 (curve 2) and E := ‘is 
(curve Y) . TO obtain the solution which is uniformly suitable in the whole domain, 
the &ngular solution must be used for r5 _( r -S a . Incidence of the matching paints 
in the adhesion zone fro < b) indicates the need to take account of higher 

7“ , 

125 0.5 - 

D‘ 
0‘5 P t 

Fig. 2 Fig. 3 
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approximations. It follows from Fig. 2 that this holds for large p (p > 0.4), and for 
real friction coefficients (p < 0.3) , the zones in which the use of the singular sohi- 
tion is necessary are small and occupy less than 20% (on the radius) of the contact 
domain even when taking just one approximation into acaunt. 

3. Let us show that if the coefficients ai and bi are determined from (1,15), 

then the fundamental equations have the form (1.16). We prove this for the system 

(1.10). The proof is by induction. 

For i = 0 we have 

IV;; j + W& jb,, = 0, u,‘; j = _ k”hWi;, &,, (3.1) 

In order for the first equation of the system (3.1) to have the form (1.16), it is 
sufficient to set ~1~ = 1 (hence b,, = 1). 

For i = 1 

(3.2) 

Let us integrate the second equation of (3.1) with respect to r and let us differen- 

tiate with respect to 5 . We obtain 
U;t’ = _ kS/P@( io 

%6 O (3.3) 

Taking account of the condition at infinity, we set the arbitrary function which 
appears during the integration equal to zero. After substituting (3.3) into the first 

equation of (3.2), we find 

w;;s+jfw * ’ ‘ri;“” = Wit” (a, - kacg) 

‘*j Equating coefficients of Wrr to zero (and taking into account that a, = 1 and 

bl = 2%), weobtain a,=ka/2. 

Therefore, the theorem is valid for i = 0,1 . Let us assume the theorem to be 

valid for i <p, andletusproveitfor t=p+i. 
We show that if the functions Wl@+J (i = 0, I, . . ., p) satisfy the first equation 

in (1.16), then the functions ur,ai+l (i = 0, I, . . ., p) , determined from the second 

equations of the system (1.10) wiII satisfy the equation 
~3; si+j + Ukc2i+j =O (3.4) 

If the functions U1sa’+J are found from the equation 
~1, sitj = 

Ii- fa 

where js satisfies (3.4). then Urpai+j is the solution of this equation, Indeed 

~1, zi+j = r-~ j(r$iadr)dr 

uL2i+j + qG2i+i = r-1 S (r J (f,,, + fzf6) dr) dr = 0 
*r 

It therefore remains to show that the right sides of the second equations of the 
system (1.10) satisfy(3.4) for i<p. 
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It is seen that if the function wr+i+j satisfies (1. lf& then its derivative~~I~z~+~ 
satisfies (3.4). The right side of the second equation of (1.10) now evidently satisfies 

(3.4) for i = 0 , andthisisprovedbyinductionfor i= I, 2,. . .,p. 
In conformity with (3.4). we substitute the quantity U,.,r@+j in the second equa- 

tions of (1.10) in place of c’661p*i+j , we integrate the relationships obtained with 
respect to P and differentiate with respect to 5. We obtain 

The system (3.5) can be considered as a system of linear algebraic equations in 
~1 i,zifj. 

86 This system has a triangular matrix of coefficients with nonzero elements 
along the principal diagonal, and therefore, is solvable everywhere. The solution of 
the system (3.5) has the form 

(3.6) 

where the *antities yli (n = 0, 1, . . . ) are determined by the recursion formulas 
in (1.15). 

Substituting (3.6) into the tp + 1) -th ~ndamen~l equation of the system (I.. lo), 
we obtain 

p-v 

Because of the selection of the coefficients ai mentioned in (1.15), ail the coeffic- 

ients in the right side of (3.7) vanish. Indeed, from the relationship for CZ~+~_~, it 

follows according to (1.15) 
Pi-$-V 

,4, Qn~ap+l-v-m - ~o""y,_,.ma, = 0 

i.e., the expression in the parentheses in (3.7) vanishes. 
Therefore, the basic equations of the system (1.10) will have the form of the fisst 

relationship of (1.16). 
The proof for the system (1.13) is analogous. 
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